Муниципальное казенное общеобразовательное учреждение «Средняя общеобразовательная школа №2 п. Теплое имени кавалера ордена Красной Звезды К.Н. Емельянова» Тепло-Огаревского района Тульской области

PACCMOTPEHO на заседании методического

№ протокола

«УТВЕРЖДАЮ» Заместитель директора по УВР Директор МКОУ

«СОШ №2 п. Теплое им, кавалера

ордена Красной Звезды К.Н. Емельяновах

Лобанова Л.В.

Приказ от 3/08

РАБОЧАЯ ПРОГРАММА

Название учебного курса:

Уровень образования:

Срок реализации:

Классы:

Составитель:

Биология

Среднее общее образование

2021 – 2023 гг.

10 - 11

Сидорова Галина Васильевна,

учитель высшей квалификационной категории

Теплое 2021 г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Рабочая программа и тематическое планирование учебного предмета «Биология» разработаны на основе:

- Федерального государственного образовательного стандарта среднего общего образования, утвержденного приказом Министерства образования и науки РФ от 17 декабря 2010 года №1897 с изменениями и дополнениями (далее ФГОС);
 - примерной программы основного общего образования по биологии.
- образовательной программы основного общего образования муниципального казенного общеобразовательного учреждения «Средняя общеобразовательная школа №2 п. Теплое имени кавалера ордена Красной Звезды К.Н. Емельянова»
- авторских учебных программ УМК под редакцией И. Н. Пономарёвой (концентрическая структура) (ФГОС).

Рабочая программа обеспечена учебниками, учебными пособиями, включенными в федеральный перечень учебников, рекомендуемых Минобрнауки РФ к использованию (приказ Минобрнауки РФ от 28.12.2018 № 345: Пономарёва И.Н., Корнилова О.А., Кучменко В.С. / Под ред. Пономарёвой И.Н. Биология. Учебники для 10-11 классов, «Вентана-Граф».

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ УЧЕБНОГО ПРЕДМЕТА (КУРСА)

Достижение *предметных результатов* — знаний, умений, компетентностей, характеризующих качество (уровень) овладения учащимися содержанием учебного предмета, предусматривает:

- характеристику содержания биологических теорий (клеточной теории, эволюционной теории Ч. Дарвина), учения В.И. Вернадского о биосфере, законов Г. Менделя, закономерностей изменчивости, вклада выдающихся учёных в развитие биологической науки;
- умение определять существенные признаки биологических объектов и процессов, совершающихся в живой природе на разных уровнях организации жизни; умение сравнивать между собой различные биологические объекты; сравнивать и оценивать между собой структурные уровни организации жизни;
- объяснение роли биологии в формировании научного мировоззрения; вклада биологических теорий в формирование современной естественнонаучной картины мира; отрицательного влияния алкоголя, никотина, наркотических веществ на развитие зародыша человека; влияния мутагенов на организм человека, экологических факторов на организмы; причин эволюции, изменяемости видов, наследственных заболеваний, мутаций, устойчивости и смены экосистем;
- умение приводить доказательства (аргументацию) единства живой и неживой природы, её уровневой организации и эволюции; родства живых организмов; взаимосвязей организмов и окружающей среды; необходимости сохранения многообразия видов и экосистем;
 - умение пользоваться биологической терминологией и символикой;
- умение решать элементарные биологические задачи, составлять элементарные схемы скрещивания и схемы переноса веществ и энергии в экосистемах (цепи питания);
- умение проводить анализ и оценку различных гипотез о сущности жизни, о происхождении жизни и человека; глобальных экологических проблем и путей их решения; последствий собственной деятельности в окружающей среде; чрезвычайных ситуаций природного и техногенного характера; биологической информации, получаемой из разных источников;
- оценку этических аспектов некоторых исследований в области биотехнологии (клонирования, искусственного оплодотворения, направленного изменения генома);
 - постановку биологических экспериментов и объяснение их результатов.

Все результаты при освоении содержания программы курса биологии для 10-11 классов

будут проявляться в знаниях, отношениях и деятельности: учебно-познавательной, интеллектуальной, ценностно-ориентационной, трудовой, экокультурной, природоохранной, физической и эстетической.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА (КУРСА)

Раздел 1. Общая биология

Тема 1. Введение в курс общей биологии

Содержание и структура курса общей биологии

Биология — наука о живой природе. Краткая история развития биологии — от натурфилософии до фундаментальной науки. Отрасли биологической науки: ботаника, зоология, физиология, микробиология, экология, генетика и др. Интеграция биологии с другими науками. Биология как теоретическая основа селекции, медицины, биотехнологии

Основные свойства живого

Понятие о биосистеме как о целостном образовании, состоящем из множества взаимосвязанных элементов. Многообразие биосистем: от молекулярного до биосферного уровня сложности. Характеристика свойств живой природы на примере биосистемы «организм»

Уровни организации живой материи

Структурные уровни организации жизни: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический, биосферный. Компоненты и основные процессы, свойственные биосистемам разных уровней сложности. Связи и зависимости между уровнями. Значение знаний о структурных уровнях организации жизни для формирования современной естественнонаучной картины мира

Значение практической биологии

История становления и развития практической биологии. Значение практической биологии для жизни людей и природы. Достижения современной биологии. Понятие об интродукции и акклиматизации организмов. Современная биотехнология, её значение для сельского хозяйства и промышленности. Бионика. Значение взаимосвязи науки и практики. Биологические знания как условие существования и устойчивого развития человека и биосферы

Методы биологических исследований Метод как определённым образом упорядоченная деятельность исследователя в раскрытии сути явлений.

Традиционные методы исследования в биологии: наблюдение, сравнение, описание, измерение, эксперимент. Разнообразие методов биологического исследования, лабораторные и полевые методы. Микроскопирование, особенности приготовления микропрепаратов. Моделирование и мониторинг в исследовании живой природы.

Обобщение и систематизация знаний по материалам темы 1 «Введение в курс общей биологии»

Живой мир и культура (семинарское занятие)

Понятие о культуре. Место и роль культуры в жизни общества. Многообразие точек зрения на феномен культуры. Отражение взаимодействия человека и природы в культуре. Роль живой природы в развитии культуры.

Философское осмысление связи природы и общества на разных этапах развития человеческого общества

Тема 2. Биосферный уровень жизни

Учение о биосфере

Понятие о биосфере. Границы биосферы. Структура биосферы. Основы учения В.И. Вернадского о биосфере. Три типа вещества в биосфере: живое, косное и биокосное. Живое вещество как совокупность организмов, существующих на Земле, и мощная преобразующая геохимическая сила. Биосфера как био- и экосистема. Главное свойство экосистемы «биосфера» — круговорот веществ и поток энергии. Понятие о ноосфере.

Функции живого вещества в биосфере

Особенности живого вещества: физико-химическое единство, накопление энергии в химических связях, дискретность, подвижность. Морфологическое и химическое разнообразие живого вещества. Способность живого вещества к эволюционному процессу. Основные функции живого вещества: газовая, энергетическая, концентрационная. Живое вещество как могущественная сила планетарного развития.

Происхождение живого вещества.

Ранние гипотезы о происхождении жизни. Теологические и материалистические гипотезы. Биогенез и абиогенез. Доказательства ошибочности теории самозарождения жизни. Гипотезы панспермии и стационарного состояния. Современные гипотезы о происхождении жизни — на основе белковых коацерватов (А.И. Опарин) и на основе нуклеиновых кислот (Дж. Холдейн). Научные доказательства образования органических веществ в условиях первобытной Земли. Химическая и биологическая эволюция. Этапы возникновения жизни на Земле.

Физико-химическая эволюция в развитии биосферы

Физические явления в истории Земли. Особенности молодой Земли. Химическая эволюция в истории Земли. Взаимодействие системы Земля — Луна. Формирование мантии Земли. Появление Мирового океана и его значение. Формирование атмосферы Земли. Климатические изменения на Земле, обусловленные изменениями её атмосферы.

Биологическая эволюция в развитии биосферы

Понятие об эволюции. Основные ароморфозы, приведшие к общему морфофизиологическому прогрессу. Первые организмы — гетеротрофные прокариоты. Возникновение автотрофов и фотосинтеза у прокариот. Роль прокариот в эволюции жизни на Земле. Появление эукариот и их роль в эволюции жизни. Отличительные особенности эукариотической клетки. Развитие многоклеточности и появление дыхания. Выход организмов на сушу. Формы наземной жизни — отдельные организмы и природные сообщества (биогеоценозы).

Хронология развития жизни на Земле

Геохронологическая шкала. Выделение в истории Земли и развития жизни на ней двух длительных временных периодов — эонов (фанерозой и криптозой), охватывающих несколько эр и периодов. Этапы развития жизни: краткая характеристика событий эр и основных периодов. Эволюционные изменения организмов в истории Земли.

Условия жизни на Земле

Четыре основные среды жизни организмов на Земле: водная, наземно-воздушная, почвенная и организменная. Понятие о среде обитания. Организмы-гидробионты, аэробионты, эдафобионты, паразиты, сожители. Экологические факторы как свойства среды. Абиотичекие, биотичекие и антропогенные факторы. Закономерности воздействия факторов среды на живые организмы. Зоны оптимума, угнетения и гибели. Ограничивающий фактор и его значение.

Биосфера как глобальная экосистема

Биосфера как биосистема. Компоненты биосферы. Функциональные группы организмов, населяющих биосферу, — продуценты, консументы, редуценты. Биосфера как глобальная экосистема. Биологический круговорот веществ, его компоненты. Роль восходящего и нисходящего потоков круговорота веществ в поддержании устойчивости биосферы. Экология — наука об отношениях организмов между собой и с окружающей средой.

Круговорот веществ в природе

Понятие о системообразующей роли круговорота веществ в биосфере. Превращение и перемещение веществ в биосфере. Живые организмы — движущая сила биологического круговорота. Открытость биосферы. Роль притока энергии в поддержании круговорота веществ. Биогеохимические циклы в биологическом круговороте веществ биосферы: круговорот углерода, воды, фосфора.

Механизмы устойчивости биосферы

Понятие об устойчивости биосферы как экосистемы. Условия, обеспечивающие устойчивость биосферы: положение Земли в космосе, проявление геохимической функции

живого вещества в круговороте, равновесное состояние между созданием и расходованием органического вещества, сложность и упорядоченность внутренней структуры, биологическое разнообразие видов.

Особенности биосферного уровня организации живой материи

Особенности биосферного уровня. Основные структурные компоненты биосферы: биогеоценозы, человеческая деятельность, географическая (ландшафтная) оболочка Земли. Основные процессы и организация биосферы. Зависимость характеристик биосферного уровня организации жизни от всех нижележащих уровней. Значение биосферного уровня организации жизни.

Взаимоотношения человека и природы как фактор развития биосферы

Человек как фактор биосферы. Проблема загрязнения окружающей среды. Сокращение биологического разнообразия. Экология как научная основа сохранения биосферы. Необходимость ориентации на гармоничные взаимоотношения между обществом и природой для обеспечения устойчивого развития биосферы. Взаимосвязь идеи устойчивого развития с идеей о ноосфере В.И. Вернадского. Задачи устойчивого развития.

Обобщение и систематизация знаний по теме 2 «Биосферный уровень жизни» Тема 3. Биогеоценотический уровень жизни

Биогеоценоз как особый уровень организации жизни

Биогеоценоз как надвидовая система — часть биосферы. Биогеоценоз — открытая биосистема. Особенности биогеоценотического уровня жизни: состав компонентов, основные процессы, организация. Биотоп и биоценоз как структурные компоненты биогеоценоза. Три основные функциональные группы, составляющие живое население биоценоза. Круговорот веществ, продуцирование биомассы, регулирование численности и обеспечение живого населения ресурсами для жизни — основные процессы биогеоценотического уровня. Организация биогеоценоза, основанная на устойчивых связях между видами и средой. Значение биогеоценотического уровня.

Биогеоценоз как био- и экосистема

Свойства биогеоценоза как биосистемы и природного сообщества. Учение о биогеоценозе В.Н Сукачёва. Единство и взаимозависимость биоценоза и биотопа. Учение об экосистеме А. Тенсли. Биологический круговорот как главное условие возникновения и существования экосистем. Соотношение понятий «биогеоценоз» и «экосистема». Биогеоценоз как основная структурная единица живого покрова суши, экосистема — основная функциональная единица живой природы.

Строение и свойства биогеоценоза

Трофическая структура биогеоценоза. Пищевые связи, цепи питания и сети питания. Трофические уровни экосистем. Первичная и вторичная продукция. Правило «10 процентов» и его практическое значение. Правило экологических пирамид. Пространственные связи в биогеоценозе. Ярусное строение. Экологическая ниша как функциональное участие вида в биогеоценозе. Жизненная форма живых организмов.

Лабораторная работа № 1

«Приспособленность растений и животных к условиям жизни в лесном биогеоценозе».

Совместная жизнь видов в биогеоценозе.

Типы связей и зависимостей в биогеоценозе. Коадаптации — результат взаимодействия видов в процессе развития экосистем. Взаимоотношения «хищник — жертва», «паразит — хозяин». Понятие о коэволюции как сопряжённой эволюции видов. Коэволюционные отношения в биогеоценозе. Многообразие связей в биогеоценозе: взаимнополезные, полезнонейтральные, полезновредные, взаимновредные. Разнообразие видов как важнейшее условие устойчивого существования биогеоценоза.

Приспособления видов к совместной жизни в биогеоценозах

Взаимнополезные связи, их примеры и значение. Полезновредные связи, их примеры и значение в биогеоценозе. Полезнонейтральные отношения между видами, их примеры и значение. Взаимновредные связи, их примеры и значение в природе. Значение различных биотических связей в поддержании существования биогеоценоза, в развитии адаптаций у видов и эволюции живого мира.

Причины устойчивости биогеоценозов

Устойчивость биогеоценоза (экосистемы) — способность непрерывно поддерживать круговорот веществ и сохранять свою структуру. Богатство видового состава и его функциональное разнообразие как основа устойчивости биогеоценоза. Значение жизненного пространства видов, их средообразующих свойств в биогеоценозе. Антропогенное воздействие, его влияние на устойчивость биогеоценозов (экосистем).

Зарождение и смена биогеоценозов

Понятие смены биогеоценозов. Смена биогеоценозов как многолетний процесс. Понятие о коренном (конечном) биогеоценозе. Временные биогеоценозы. Особенности временных и коренных биогеоценозов. Сукцессия как последовательная смена биогеоценозов. Первичные и вторичные сукцессии, их особенности. Сукцессионный ряд, или серия последовательно сменяющихся биогеоценозов. Причины, вызывающие смену. Типы смен биогеоценозов: первичные, вторичные и вековые.

Суточные и сезонные изменения биогеоценозов

Циклические изменения биогеоценозов и их отличие от смены биогеоценозов. Суточные изменения в биогеоценозе как показатель активности и жизнедеятельности видов. Сезонные изменения биогеоценозов как показатель активности и количественного соотношения населяющих их видов. Годичные циклические изменения, их причины и примеры.

Многообразие водных биогеоценозов

Типы водных экосистем (гидроценозов): морские и пресноводные. Морские экосистемы (прибрежные и открытых вод), их обитатели (планктон, бентос). Пресноводные экосистемы — озёра, пруды и реки. Экологическое состояние водных экосистем. Угроза эвтрофикации. Биоиндикаторы чистоты водных бассейнов.

Многообразие биогеоценозов суши

Биогеоценозы суши: древесные и травянистые. Лесные биогеоценозы (экосистемы), их многообразие, особенности и распространение. Травянистые биогеоценозы, их особенности, многообразие и распространение. Культурные экосистемы — агроэкосистемы (агробиоценозы), их особенности, разнообразие и значение для человека. Структура и устойчивость агробиоценозов.

Сохранение разнообразия биогеоценозов (экосистем)

Антропогенное влияние в природе. Кризисное состояние природных биогеоценозов (экосистем). Пути сохранения биогеоценозов.

Природопользование в истории человечества Первые проявления воздействия человека на природу: добывание пищи и расселение по земной поверхности. Смена биогеоценозов при неумелом использовании огня человеком. Значение коллективной охоты и её последствия. Влияние земледелия и скотоводства на экосистемы. Нарушение равновесия между человеческим обществом и природой как причина гибели многих природных биогеоценозов и замены их на агроценозы. Сельскохозяйственная революция — овладение человеком средой своего обитания. Начало научного освоения природы. Промышленная революция, её последствия. Научно-техническая революция, её влияние на природные экосистемы. Отношение к природе — мера культурного уровня общества.

Экологические законы природопользования

Взаимозависимость будущего человечества и сохранности биологического разнообразия экосистем.

Четыре экологических закона природопользования, их значение для природы и человечества.

Обобщение и систематизация знаний по теме «Биогеоценотический уровень жизни»

Тема 4. Популяционно-видовой уровень

Вид, его критерии и структура

Вид как основной структурный элемент биогеоценоза. Критерии вида: морфологический, физиолого-биохимический, географический, экологический, репродуктивный. Современные представления о виде как о совокупности популяций, биосистеме.

Лабораторная работа № 2 «Морфологические критерии, используемые при определении видов».

Популяция как форма существования вида и как особая генетическая система

Популяция как надорганизменная система, её особенности. Состав популяции. Популяция как форма существования вида в биосфере, компонент биогеоценоза, особая структурная единица вида, генетическая система. Понятия «генотип» и «генофонд».

Популяция — структурная единица вида

Типы популяций: географическая, экологическая и элементарная. Географическая популяция как крупная территориальная группировка особей, особенности её формирования. Специализация экологических популяций, входящих в один биогеоценоз. Элементарная популяция как генетически однородная часть экологической популяции. Значение популяций как единиц видового населения биогеоценоза.

Популяция как основная единица эволюции

Популяционные основы эволюции, обусловленные генетической неоднородностью её особей и изменением её генофонда. Понятие о микроэволюции как совокупности процессов, протекающих в популяции. Движущие силы и факторы эволюции: естественный отбор, мутации, популяционные волны, дрейф генов, изоляция. Естественный отбор как движущая и направляющая сила эволюции.

Видообразование — процесс возникновения новых видов

Понятие о видообразовании как сложнейшем процессе развития живой материи. Возникновение нового вида как центральное событие эволюции.

Способы образования новых видов: географический и биологический, их особенности. Причины вымирания отдельных видов. Деятельность ООН по поддержанию и сохранению биологического разнообразия нашей планеты.

Система живых организмов на Земле

Попытки систематизации живых организмов в истории естествознания. Систематика как наука, её задачи. Основоположники систематики — К. Линней и Дж. Рей. Понятие о таксоне. Естественная система живых организмов. Вид как основная единица классификации живых организмов. Бинарное название вида. Современная система организмов как результат длительного изучения эволюционного развития органического мира.

Сохранение биоразнообразия — насущная задача человечества

Биологическое разнообразие как результат эволюции и необходимое условие поддержания устойчивости биосферы. Проблемы утраты биоразнообразия: сокращение лесов, степей и населяющих их видов. Принятие ООН важного документа — «Конвенции о сохранении биологического разнообразия».

Этапы антропогенеза

Происхождение человека. Положение человека в системе органического мира. Направления эволюции семейства гоминид. Австралопитеки как непосредственные предшественники предков рода Человек. Становление современного человека как биологического вида — антропогенез. Стадии эволюции человека: архантроп, палеоантроп, неоантроп, или Человек разумный. Особенности антропогенеза. Общая закономерность эволюции человека: увеличение головного мозга и ускорение темпов антропогенеза.

Человек как уникальный вид живой природы

Популяционные основы антропогенеза. Появление человека — результат длительной эволюции. Уникальные особенности вида Человек разумный. Роль социальных факторов в антропогенезе. Человек как существо биологическое и социальное. Расы человека как следствие полиморфности вида Человек разумный. Одинаковый уровень умственного и физического развития у представителей человеческих рас. Гипотезы о происхождении человека современного типа: моноцентризм и полицентризм.

История развития эволюционных идей

Вклад европейских учёных в развитие зволюционных идей. Теории креационизма и трансформизма. Система органического мира К. Линнея и её значение. Основные положения эволюционной теории Ж.-Б. Ламарка, её недостатки и значение. Предпосылки появления эволюционной теории Ч. Дарвина. Основные положения учения Ч. Дарвина. Движущие силы

эволюции по Ч. Дарвину. Значение теории эволюции Ч. Дарвина.

Естественный отбор и его формы

Понятие о естественном отборе. Предпосылки действия естественного отбора. Естественный отбор как движущая сила эволюции. Вероятностный характер действия естественного отбора. Формы естественного отбора: движущая и стабилизирующая. Значение разных форм естественного отбора.

Искусственный отбор и его роль в увеличении биологического разнообразия

Искусственный отбор как фактор эволюции культурных видов. Принципы искусственного отбора. Эффективность искусственного отбора. Порода, сорт, штамм. Значение искусственного отбора для человека и природы.

Раздел 2. Общая биология

Тема 1. Организменный уровень жизни

Организменный уровень жизни и его роль в природе

Разнообразие форм организмов. Особенности организменного уровня жизни: обмен веществ, питание, дыхание, размножение, выделение, поведение, образ жизни, приспособленность к среде обитания. Структурные элементы, основные процессы и организация организменного уровня. Значение организменного уровня в природе: организм как дискретная свободноживущая живая единица и выразитель свойств популяций и видов. Двунаправленность жизни. Создание биотической среды.

Организм как биосистема

Понятие об организме. Организм как реальный носитель жизни и как компонент организменного уровня жизни. Организм как саморегулирующаяся, самоподдерживающаяся, дискретная живая система — биосистема. Структурные элементы биосистемы «организм» — клетки, ткани и органы. Процессы, протекающие в организме, обеспечивающие его жизнедеятельность. Значение индивидуального запаса наследственной информации организма. Понятие о саморегуляции. Типы регуляции у растительных и животных организмов. Гомеостаз.

Процессы жизнедеятельности одноклеточных организмов

Свойства одноклеточных организмов. Одноклеточные автотрофы и гетеротрофы. Способы питания: пиноцитоз и фагоцитоз. Движение, раздражимость, поведение, размножение одноклеточных. Значение одноклеточных организмов в природе. Работы И.И. Мечникова: от открытия фагоцитоза до создания теории иммунитета.

Процессы жизнедеятельности многоклеточных организмов

Многообразие многоклеточных организмов: грибы, растения, животные. Основные процессы жизнедеятельности многоклеточных организмов. Специализация клеток, тканей и органов. Обмен веществ и превращения энергии в организме. Ассимиляция и диссимиляция. Важнейшие процессы ассимиляции: биосинтез белка и фотосинтез. Значение диссимиляции — обеспечение организма энергией. Системы органов животного организма, их взаимодействие.

Типы питания и способы добывания пищи

Поступление пищи в организм как обязательное условие его существования. Три группы организмов, различающихся по типу питания: автотрофы, гетеротрофы, миксотрофы. Способы добывания пищи.

Две системы поступления питательных веществ в организм у высших растений — воздушная и корневая. Способы питания у животных: фильтрация, активный захват пищи (хищничество, паразитизм и др.). Развитие у организмов приспособительных свойств к добыванию пищи в процессе эволюции. Формирование у животных пищеварительной системы как результат эволюции. Усвоение пищи (переваривание, всасывание).

Размножение организмов

Размножение как важнейшее свойство, присущее всем живым организмам. Два типа размножения: бесполое и половое. Формы бесполого размножения: деление клетки надвое, множественное деление, размножение спорами, вегетативное размножение. Полная идентичность дочерних и родительских организмов при бесполом размножении. Понятие о

клоне. Значение клонирования.

Половое размножение — слияние половых клеток от двух организмов родителей. Образование зиготы. Новые наследственные свойства у дочерних организмов. Пол и половые признаки. Первичные и вторичные половые признаки.

Оплодотворение и его значение

Оплодотворение как главное условие полового размножения. Генетический смысл и результат оплодотворения. Зигота — клетка с двойным набором хромосом от обоих родителей. Наружное и внутреннее оплодотворение. Искусственное оплодотворение — ведущий метод в селекции организмов.

Двойное оплодотворение у цветковых растений (открыто С. Γ . Навашиным). Биологическое значение двойного оплодотворения.

Развитие организмов от зарождения до смерти (онтогенез)

Понятие об онтогенезе. Два периода онтогенеза: эмбриональный и постэмбриональный. Этапы эмбрионального развития у животных: дробление, гаструляция и дифференциация. Развитие зародыша (эмбриогенез) на примере ланцетника: бластула, гаструла, нейрула, зародыш (эмбрион). Сходство эмбрионов у позвоночных животных. Закон Бэра. Постэмбриональный период.

Типы развития организмов: прямое и непрямое. Развитие с полным и неполным метаморфозом. Стадии взрослого организма: генеративная и старение. Онтогенез как реализация генетической программы организма. Последствия влияния алкоголя, никотина, наркотических веществ на развитие зародыша человека.

Из истории развития генетики

Генетика как наука, изучающая наследственность и изменчивость организмов. Наследственность — свойство организмов передавать наследственные признаки своему потомству. Изменчивость — различия в признаках у родственных организмов. Зарождение науки генетики. Работы Г. Менделя по изучению наследования признаков. Закономерности передачи наследственных признаков от родителей потомкам. Представление о гене. Хромосомная теория наследственности, её основные положения. Отношения генотипа и фенотипа. Развитие знаний о генофонде и геноме.

Изменчивость признаков организмов и её типы

Изменчивость как отражение взаимосвязи организмов с окружающей средой. Ненаследственная и наследственная изменчивость. Понятие о модификационной (фенотипической) изменчивости. Взаимодействие генотипа и среды. Наследственная изменчивость и её типы: комбинативная и мутационная. Типы мутаций (хромосомные и генные). Вклад Н.И. Вавилова в биологическую науку — учение о закономерностях изменчивости. Закон гомологических рядов наследственной изменчивости и его значение для генетики и эволюционного учения.

Лабораторная работа № 1 «Модификационная изменчивость».

Генетические закономерности, открытые Г. Менделем

Методы работы Γ . Менделя. Новый подход к гибридологическим исследованиям. Причины выбора объекта исследования — гороха посевного. Понятие о моногибридном скрещивании.

Генетическая терминология и символика. Доминантные и рецессивные признаки. Понятие об аллели. Правила записи скрещивания организмов. Гомозиготные и гетерозиготные организмы.

Первый закон Менделя — закон доминирования. Второй закон Менделя — закон расщепления. Правило чистоты гамет.

Наследование признаков при дигибридном скрещивании

Закономерности наследования, установленные Менделем при дигибридном скрещивании: закон независимого наследования признаков (третий закон Менделя). Причины независимого комбинирования генов. Дискретный характер генов. Анализирующее скрещивание, его значение и применение. Отклонение от статистических закономерностей наследования по третьему закону Менделя.

Явление сцепленного наследования генов. Группы сцепления. Закон Т. Моргана.

Кроссинговер — обмен идентичными участками гомологичных хромосом. Представление о генетических картах организмов

Взаимодействие генов

Отклонения от законов Менделя при взаимодействии аллельных генов: неполное доминирование и кодоминирование. Отклонения от законов Менделя при взаимодействии неаллельных генов: комплементарность, эпистаз, полимерия. Понятие о генахмодификаторах.

Генетические основы селекции. Вклад Н.И. Вавилова в развитие селекции

Понятие о селекции. Задачи селекции. Генетические основы селекции. Связь селекции с сельским хозяйством. Основные методы селекции — искусственный отбор и гибридизация (мутагенез и полиплоидия). Явление гетерозиса, его использование. Полиплоиды — важный источник природной изменчивости. Роль исходного материала в селекции. Учение Н.И. Вавилова о центрах происхождения культурных растений. Семь основных центров происхождения культурных растений. Первичные и вторичные центры. Роль человека в создании многообразия форм живых организмов.

Генетика пола и наследование, сцепленное с полом

Понятие о поле. Механизм определения пола у разных живых организмов. Гомогаметное и гетерогаметное сочетание хромосом в зиготе. Половые хромосомы и аутосомы. Определение пола у млекопитающих и человека. Наследование признаков, сцепленных с полом. Причины возникновения наследственных заболеваний у потомков. Роль аутосомных хромосом в формировании признаков организма. Понятие о половых и аутосомных хромосомах как единой генетической системе организма.

Наследственные болезни человека

Особенности генетики человека. Понятие о кариотипе и его значении для науки. Собственно наследственные болезни (генные и хромосомные) и мультифакторные заболевания. Методы лечения и профилактика наследственных болезней.

Мутагены. Их влияние на живую природу и человека

Понятие о мутагенезе. Генеративные и соматические мутации. Факторы, вызывающие мутации. Ионизирующие, химические, спонтанные мутагены, особенности их воздействия на организм.

Этические аспекты медицинской генетики

Предмет и задачи медицинской генетики. Связь медицинской генетики с наукой этикой. Биоэтический кодекс, регламентирующий проведение генетических исследований человека. Понятие о биоэтике. Этические принципы медицинской генетики, сформулированные Всемирной организацией здравоохранения (ВОЗ).

Достижения биотехнологии и этические аспекты её исследований

Биотехнология как наука и практическое использование живых организмов в народном хозяйстве и здравоохранении. Роль биотехнологии в мероприятиях по защите окружающей среды. Направления биотехнологии: генная (генетическая) инженерия и клеточная инженерия. Индустрия ДНК как современная область биотехнологии. Опыты по созданию новых клеток. Современные аспекты биотехнологических исследований. Представление о стволовых клетках и их значении. Этические аспекты клонирования.

Факторы, определяющие здоровье человека

Генотип как фактор здоровья организма. Понятие о психическом и физическом здоровье. Среда обитания как фактор здоровья. Социальные факторы здоровья. Образ жизни человека. Режим дня как основа образа жизни. Негативные стороны образа жизни — гиподинамия, наркомания, употребление алкоголя, курение. Здоровый образ жизни человека как показатель культуры личности.

Творчество в жизни человека и общества. Семинарское занятие

Биосоциальная сущность человека. Способность человека к творчеству, формирующаяся в процессе его воспитания и зависящая от типа культуры. Исследование роли творчества в жизни человека в трудах философов, психологов, педагогов и др. Понятие о жизненном цикле человека.

Царство Вирусы: разнообразие и значение

Царство Вирусы. Понятие о вирусах. Вирусы — неклеточная форма жизни, которая поражает всё живое на Земле. История открытия некоторых вирусов. Строение вирусов. Две формы вирусов — покоящаяся и репродуцирующаяся. Рецепторный эндоцитоз — основной путь проникновения вируса в клетку хозяина. Этапы проникновения вириона в клетку хозяина. Происхождение вирусов

Вирусные заболевания

Роль вирусов в жизни человека и в истории человечества. Первые описания вирусных заболеваний и их значение. Понятие об эпидемии и пандемии. Вирусные заболевания животных и растений.

СПИД — вирусное заболевание. Особенности строения и функционирования вируса СПИДа. Научное и клиническое исследование вируса СПИДа. Профилактика заражения ВИЧ.

Вирусология — наука о вирусах

Вирусология — наука о вирусах, изучающая их строение, биохимию, систематику и значение. Задачи науки вирусологии. Роль работ Д.И. Ивановского, Л. Пастера и Э. Дженнера.

Обобщение и систематизация знаний по теме 1 «Организменный уровень жизни» Тема 2. Клеточный уровень жизни

Клеточный уровень организации живой материи и его роль в природе

Клетка как представитель клеточного уровня жизни и элементарная структурная единица живых организмов. Клетка как биосистема. Структурные компоненты клетки. Основные процессы и организация клеточного уровня жизни. Значение клеточного уровня жизни в природе.

Клетка как этап эволюции живого в истории Земли

Важнейшие события эволюции жизни. Этапы эволюции живого: появление автотрофного питания (фотосинтеза), аэробного дыхания, эукариотической клетки, полового размножения и многоклеточности. Примитивные прокариотические клетки.

Восстановительные свойства первичной атмосферы Земли. Брожение. Поступление свободного кислорода в атмосферу благодаря появлению фотосинтеза. Преимущества аэробного дыхания. Появление прокариот с разными типами метаболизма. Увеличение разнообразия форм эукариотической клетки. Клеточная форма организации как основа дальнейшего развития органического мира.

Многообразие клеток. Ткани

Многообразие типов клеток эукариот. Отличия растительной клетки от животной: наличие клеточной стенки, пластид, вакуоли с клеточным соком. Клетки многоклеточного организма и ткани. Возникновение тканей в процессе эволюции живого мира. Многообразие растительных и животных тканей.

Строение клетки

Основные части эукариотической клетки: поверхностный комплекс, ядро, цитоплазма с органоидами и включениями.

Структура и значение поверхностного комплекса клетки. Строение биологической мембраны, её разновидности. Функции плазматической мембраны. Наличие клеточной стенки у растительной клетки, гликокаликса — у животной. Ядро — обязательная часть эукариотической клетки, его значение. Хроматин. Цитоплазма, её свойства и значение.

Органоиды как структурные компоненты цитоплазмы

Органоиды — постоянные компоненты клетки. Мембранные и немембранные органоиды. Функции органоидов в клетке. Непостоянные компоненты клетки — включения. Немембранные органоиды: цитоскелет, клеточный центр, рибосомы, микротрубочки, жгутики и реснички. Мембранные органоиды: клеточная мембрана, ЭПС, комплекс Гольджи, лизосомы. Двумембранные органоиды: митохондрии, пластиды. Особенности строения хлоропластов.

Особенности клеток прокариот и эукариот

Прокариоты, их строение и процессы жизнедеятельности. Сравнение свойств клеток прокариот и эукариот. Гипотезы о происхождении эукариот — симбиотическая и эндобионтная.

Клеточный шикл

Понятие о клеточном цикле как периоде индивидуальной жизни клетки. Этапы клеточного цикла: период клеточного роста (интерфаза) и период клеточного деления (митоз). Признаки интерфазной клетки. Функции интерфазы. Две стадии клеточного деления: деление клеточного ядра (кариокинез) и деление цитоплазмы (цитокинез). Длительность жизни клетки. Представление об апоптозе и некрозе.

Деление клетки — митоз и мейоз

Процесс деления клетки как способ её размножения. Митоз, или непрямое деление клетки. Фазы митоза: профаза, метафаза, анафаза, телофаза. Результат митоза. Биологическое значение митоза. Мейоз — редукционное деление клетки. Мейоз как процесс образования половых клеток организма. Два деления митоза, их особенности. Сравнение митоза и мейоза. Биологическое значение мейоза.

Лабораторная работа № 2 «Исследование фаз митоза на микропрепарате клеток кончика корня».

Особенности образования половых клеток

Образование гамет (гаметогенез). Этапы образования и развития гамет в половых железах. Сперматогенез — процесс образования мужских гамет. Оогенез — процесс образования женских гамет. Отличие оогенеза от сперматогенеза. Значение гаметогенеза.

Структура и функции хромосом

Структура хромосом. Понятие о хроматине. Состав хроматина. Форма хромосом. Части хромосом. Функции центромеры. Способность хромосом к удвоению (воспроизведению) путём репликации ДНК. Компактизация хромосом. Функции хромосом. Процесс передачи наследственной информации.

Многообразие прокариот

Бактерии как представители прокариот. Многообразие бактерий. Общая характеристика бактерий. Строение бактерий. Движение бактерий. Спорообразование у бактерий.

Роль бактерий в природе

Роль бактерий в природе. Бактерии — фиксаторы азота. Использование бактерий человеком.

Многообразие одноклеточных эукариот

Автотрофные одноклеточные организмы. Многообразие фотосинтезирующих одноклеточных эукариот. Размножение одноклеточных водорослей. Значение водорослей в природе. Гетеротрофные одноклеточные организмы. Многообразие простейших. Болезнетворные и неболезнетворные простейшие. Значение простейших.

Микробиология на службе человека

Предмет и задачи микробиологии. Взаимосвязь микробиологии с биотехнологией. Значение микробиологических исследований.

История развития науки о клетке

Наука о клетке — цитология. Первые исследования клеток под микроскопом. Работы К.М. Бэра, М.Я. Шлейдена, Т. Шванна и их вклад в развитие биологической науки. Первые положения клеточной теории. Развитие учения о клетке. Роль технического оснащения для цитологических исследований. Современная клеточная теория.

Дискуссионные проблемы цитологии

Гипотезы в истории биологии. Идеи преформизма, их несостоятельность. Гипотезы о происхождении эукариот — сукцессионная и симбиотическая. Значение гипотез для развития биологической науки.

Гармония и целесообразность в живой природе. Семинарское занятие

Эволюция понятий «целесообразность» и «гармония» в истории человеческой культуры. Гармония и целесообразность в живой природе. Клетка как уникальное явление природы. Гармония и биологическая целесообразность (приспособленность), или природосообразность, в проявлении компонентов биосистем.

Обобщение и систематизация знаний по теме 2 «Клеточный уровень жизни»

Молекулярный уровень организации живой материи: значение и роль в природе

Особенности молекулярного уровня жизни. Молекулярный уровень как первичная основа жизни. Понятие о биомолекулах. Многообразие и уникальность биологических молекул. Биополимеры. Макромолекулы и комплексы молекул как элементарные живые системы — биосистемы.

Значение молекулярного уровня жизни в биосфере.

Основные химические соединения живой материи

Состав химических элементов клетки. Неорганические вещества клетки: вода, минеральные соли, двуокись углерода, кислоты и основания. Значение воды в живой клетке. Органические вещества: углеводы, липиды, белки и нуклеиновые кислоты и др. Многообразие углеводов и их значение. Моносахариды и полисахариды. Липиды, их многообразие и значение в клетке. Белки как полимерные соединения, состоящие из мономеров — аминокислот. Форма белков (фибриллярные и глобулярные). Простые и сложные белки. Функции белков в клетке. Белки-ферменты.

Структура и функции нуклеиновых кислот

Понятие о нуклеиновых кислотах как уникальных биополимерах, состоящих из мономеров — нуклеотидов. Состав нуклеотидов. ДНК и РНК. Двуспиральная структура молекулы ДНК, её расшифровка в 1953 г. Понятие о комплементарности. Репликация (самоудвоение) ДНК, её биологическое значение. Нуклеотидный состав РНК. Особенности строения молекул РНК. Формы РНК: информационная, рибосомальная и транспортная.

Процессы синтеза в живой клетке

Синтез как часть обмена веществ. Понятие о биосинтезе. Фотосинтез — синтез углеводов в зелёной клетке. Две фазы фотосинтеза — световая и темновая. Представление о фотосистемах (ФС I и ФС II). Результаты световой фазы. Процессы темновой фазы (цикл Кальвина) и её результаты.

Процессы биосинтеза белка

Последовательность аминокислот в полимерной молекуле белка. Представление о триплетном генетическом коде ДНК. Роль РНК в биосинтезе белка. Свойства генетического кода.

Этапы синтеза молекул белка: транскрипция и трансляция. Формирование информационной (матричной) РНК — и РНК. Молекулы тРНК, их строение и функции. Образование молекул рРНК и рибосом. Роль рибосом в биосинтезе белка. Энергетика биосинтеза белка. Регуляция процессов биосинтеза в живой клетке.

Молекулярные процессы расщепления

Понятие о биологическом окислении или клеточном дыхании. АТФ как основное энергоёмкое вещество клетки. Этапы окисления глюкозы в клетке. Гликолиз и брожение как примеры бескислородного клеточного дыхания. Кислородный этап клеточного дыхания. Цикл Кребса и его роль в энергетическом обмене клетки. Накопление энергии (молекул АТФ) на этапах гликолиза и кислородного окисления. Роль цитоплазмы и митохондрий в клеточном дыхании. Понятие о дыхательной цепи.

Регуляторы биомолекулярных процессов

Ферменты и их роль в регуляции процессов в клетке. Коферменты как каталитически активные небелковые соединения. Витамины, их многообразие и значение. Гормоны как гуморальные регуляторы.

Химические элементы в оболочках Земли и молекулах живых систем

Роль химических элементов в молекулярных процессах клетки. Макро- и микроэлементы. Понятие о геохимических заболеваниях.

Химическое загрязнение окружающей среды как глобальная экологическая проблема

Проблема загрязнения окружающей среды отходами предприятий. Опасность полимерного мусора. Пестициды, негативные результаты их использования в сельском хозяйстве. Диоксины как побочный продукт ряда химических производств. Необходимость охраны окружающей среды. Идея устойчивого развития и пути его достижения. Становление ноосферного сознания: понимание уникальности и ценности жизни, воспитание

ответственного отношения к биосфере и к самому себе как к части биосферы.

Время экологической культуры. Семинарское занятие

Неустойчивое состояние биосферы — глобальная экологическая проблема человечества. Пути сохранения биосферы. История отношений человека и природы. Различные мотивы в отношении человека к природе. Роль ценностных ориентаций, господствующих в обществе. Экологическая культура, её место и значение в обществе. Экологическая культура как часть общей культуры человека

Тема 4. Заключение

Структурные уровни организации живой природы

Жизнь как уникальное свойство материи. Существование жизни в виде биосистем. Возникновение биологического разнообразия в процессе эволюции живой материи: видового, генетического, экологического, географического, социально-этологического и структурно-уровневого. Уровневая организация живой природы. Уровни организации живой материи: молекулярный, клеточный, организменный, популяционно-видовой, биогеоценотический и биосферный. Иерархия уровней организации живой материи.

Обобщение и систематизация знаний по теме 3 «Молекулярный уровень жизни» Итоговый контроль знаний по курсу биологии 11 класса

КАЛЕНДАРНО-ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 класс

№ п/п	Раздел	Тема урока	Коли- чество часов
1.	Введение в	Что изучает общая биология.	1
2.	курс общей	Основные свойства жизни.	1
3.	биологии	Структурные уровни организации жизни.	1
4		Лабораторная работа №1. Определение и морфологическое	1
4.		описание вида.	1
5.		Значение биологических знаний.	1
6.		Живой мир и культура.	1
7.		Экскурсия №1. Многообразие видов. Сезонные изменения в природе.	1
8.	Биосферный	Учение В.И. Вернадского о биосфере.	1
9.	уровень	Круговорот веществ и энергии к биосфере.	1
10.	организации	Функции живого вещества в биосфере	1
11.	инѕиж	Появление и усложнение первоначальных форм жизни в биосфере	1
12.		Теории возникновения жизни	1
13.		Теории возникновения жизни	1
14.		Биологическая эволюция в развитии биосферы	1
15.		История развития жизни на Земле. Катархей, архей.	1
16.		Развитие жизни в протерозое и палеозое	1
17.		Жизнь в мезозое и кайнозое	1
18.		Функции живых организмов в биосфере	1
19.		Биосфера как глобальная экосистема	1
20.		Понятие о ноосфере как новом состоянии биосферы.	1
21.		Лабораторная работа №2. Оценка состояния условий окружающей среды	1
22.		Особенности биосферного уровня организации жизни и его роль на Земле.	1
23.		Взаимоотношения человека и природы как фактор развития биосферы.	1
24.		Живой мир в литературе	1
25.		Урок обобщения и подведения итогов по теме	1
26.	Биогеоцено-	Биогеоценоз как особый уровень организации жизни	1
27.	тический	Биогеоценоз как многовидовая биосистема и экосистема	1
28.	уровень	Строение и свойства биогеоценоза.	1
29.	организации	Правило 10%. Экологическая пирамида	1
30.	инѕиж	Типы связей и зависимостей в биогеоценозе	1
31.		Позитивные отношения – симбиоз и кооперация	1
32.		Антибиотические отношения – хищничество, паразитизм	1
33.		Взаимно-приспособительные свойства. Черты приспособленности среди обитателей.	1
34.		Устойчивость биогеоценозов	1
35.		Смена биогеоценозов и её причины	1
36.		Суточные изменения биогеоценозов	1
37.		Сезонные изменения биогеоценозов	1
38.		Многообразие водных биогеоценозов	1

39.		Многообразие биогеоценозов суши	1
40.		Агроценозы	1
41.		Необходимость сохранения разнообразных биогеоценозов.	1
42.		Экологические законы природопользования	1
43.		Образцы природы в художественных произведениях и народном творчестве	1
44.		Урок обобщения и подведения итогов по теме	1
45.	Популяци-	Основные свойства и критерии вида	1
46.	онно-	Популяция как форма существования вида.	1
47.	видовой	Популяция как основная единица эволюции.	1
48.	уровень	Микро- и макроэволюция – два процесса эволюции	1
49.	организации	Видообразование и его способы.	1
50.	жизни	Система живых организмов на Земле	1
51.		Охрана природы – насущная задача человечества	1
52.		Человек как уникальный вид живой природы	1
53.		Этапы эволюции человека	1
54.		Расы	1
55.		Особенности популяционно-видового уровня жизни	1
56.		Основные закономерности эволюции	1
57.		Современные представления об эволюции органического мира	1
58.		Естественный отбор и его формы	1
59.		Искусственный отбор и его роль в природе	1
60.		Основные направления эволюции	1
61.		Прогресс и регресс в эволюции живой природы	1
62.		Современное состояние изучения видов	1
63.		Значение изучения популяций и видов	1
64.		Генофонд и причины гибели видов	1
65.		Проблема сохранения видов	1
66.		Всемирная охрана природных видов	1
67.		Охрана редкий и исчезающих видов в Тульской области.	1
68.		Урок обобщения и подведения итогов по теме и по курсу.	1

11 класс

№ п/п	Раздел	Тема урока	Коли- чество часов
1.	Организмен- ный уровень	Организменный уровень организации жизни и его роль в природе.	1
2.	организации	Организм как биосистема	1
3.	инеиж	Процессы жизнедеятельности одноклеточных	1
4.		Процессы жизнедеятельности многоклеточных организмов	1
5.		Экскурсия №1. Наблюдения поведенческих реакция организмов на изменения факторов внешней среды.	1
6.		Типы питания организмов	1
7.		Индивидуальное развитие организмов (онтогенез)	1
8.		Регуляция процессов жизнедеятельности организмов	1
9.		Бесполое размножение организмов	1
10.		Половое размножение организмов.	1
11.		Наследственность - основное понятие генетики	1
12.		Гены и признаки (фены)	1
13.		Хромосомная теория наследования признаков.	1
14.		Изменчивость признаков организма: модификационная и онтогенетическая	1
15.		Генотипическая изменчивость и её причины	1
16.		Генетические закономерности, открытые Г.Менделем при моногибридном скрещивании	1
17.		Решение генетических задач на моногибридное скрещивание	1
18.		Проявление генетических закономерностей при дигибридном скрещивании	1
19.		Решение задач на дигибридное скрещивание	1
20.		Взаимодействие аллельных генов.	1
21.		Взаимодействие неаллельных генов	1
22.		Генетика пола и наследование, сцепленное с полом	1
23.		Решение задач	1
24.		Наследственные болезни человека.	1
25.		Этические аспекты применения генных технологий. ГМО	1
26.		Мутагены и их влияние на живые организмы.	1
27.		Факторы, определяющие здоровье человека	1
28.		Здоровье и образ жизни	1
29.		Организмы царства вирусов.	1
30.		Вирусные заболевания и меры борьбы с ними	1
31.		Урок обобщения и подведения итогов	1
32.	Клеточный	Клеточный уровень организации жизни и его роль в природе.	1
33.	уровень	Клетка – этап эволюции живого в истории Земли	1
34.	организации	Многообразие клеток и тканей	1
35.	жизни	Основные части в строении клетки	1
36.		Органоиды клетки, их строение и функции	1
37.		Особенности клеток прокариот и эукариот	1
38.		Клеточный цикл	1
39.		Непрямое деление клетки – митоз Изучение фаз митоза. <i>Лабораторная работа</i> .	1
40.		Редукционное деление клетки. Мейоз	1
41.		Особенности половых клеток Образование мужских и	1

		женских половых клеток	
42.		Двойное оплодотворение у цветковых растений	1
43.		Хромосомы, их структура и функции.	1
44.		Достижения медицинской генетики	1
45.		Общая характеристика бактерий как представителей	1
13.		прокариот	
46.		Бактерии в организме человека	1
47.		Роль бактерий в природе	1
48.		Общая характеристика одноклеточных растений	1
49.		Многообразие одноклеточных животных – простейших.	1
50.		Роль простейших в природе.	1
51.		Урок обобщения и подведения итогов.	1
52.	Молекуляр-	Молекулярный уровень жизни и его особенности	1
53.	ный уровень	Химический состав клетки. Лабораторная работа.	1
54.	организации	Углеводы, их строение и значение.	1
55.	ингиж	Липиды, их строение и значение	1
56.		Белки клетки, их строение и значение	1
57.		Нуклеиновые кислоты, их строение и функции в клетке	1
58.		Биосинтез углеводов в клетке – фотосинтез.	1
59.		Процесс биосинтеза белков в клетке.	1
60.		Процессы расщепления молекул в клетке.	1
61.		Обмен веществ как взаимосвязь процессов синтеза и распада	1
01.		молекул в клетке	1
62.		Регуляторы биохимических процессов в клетке	1
63.		Естественные и искусственные биополимеры	1
64.		Химические элементы в оболочках Земли и молекулах живых	1
04.		систем	1
65.		Химическое загрязнение окружающей среды как глобальная	1
		экологическая проблема	1
66.	Заключение	Структурные уровни организации живой природы.	1
67.		Биологическое разнообразие живого мира	1
68.		Урок обобщения и подведения итогов по теме и по курсу	1